IONIC POLYIMIDE MATERIALS AND METHODS OF USE

Applicant: The Board of Trustees of the University of Alabama, Tuscaloosa, AL (US)

Inventors: Jason Edward Bara, Tuscaloosa, AL (US); Matthew S. Shannon, Northport, AL (US); John David Roveda, Jr., Mobile, AL (US); David A. Wallace, Brentwood, TN (US); Max Simon Mittenthal, Tuscaloosa, AL (US)

Assignee: The Board of Trustees of the University of Alabama, Tuscaloosa, AL (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 104 days.

Appl. No.: 14/982,386
Filed: Dec. 29, 2015

Prior Publication Data

Related U.S. Application Data
Provisional application No. 62/098,068, filed on Dec. 30, 2014.

Int. Cl.
B01D 53/22 (2006.01)
B01D 71/64 (2006.01)
(Continued)

U.S. Cl.
C08G 73/1085 (2013.01); B01D 53/228 (2013.01); B01D 71/64 (2013.01); (Continued)

Field of Classification Search
CPC B01D 53/1475; B01D 53/1493; B01D 53/228; B01D 71/64; B01D 2252/30; (Continued)

References Cited
U.S. PATENT DOCUMENTS
4,113,628 A * 9/1978 Alegranti B01D 71/64
210/500:23
4,574,144 A * 3/1986 Yates, III C08G 73/1067
525/434 (Continued)

OTHER PUBLICATIONS
(Continued)

Primary Examiner — Jason M Greene
Attorney, Agent, or Firm — Meunier Carlin & Curfman LLC

ABSTRACT
Disclosed are compositions and methods of preparing ionic polyimides. Also disclosed are methods to tune the properties of the ionic polyimide by designing the components of the ionic polyimide. Additionally, disclosed herein is a composition comprising an ionic polyimide. Also disclosed herein is a composition comprising an ionic polyimide and an ionic liquid. The disclosed compositions can be utilized to capture gases.

27 Claims, 1 Drawing Sheet
(51) Int. Cl.
C08G 73/10 (2006.01)
C08K 5/3445 (2006.01)
C08G 73/06 (2006.01)
B01J 20/26 (2006.01)
B01J 20/28 (2006.01)
B01D 53/14 (2006.01)

(52) U.S. Cl.
CPC
B01J 20/262 (2013.01); B01J 20/264 (2013.01); B01J 20/28033 (2013.01); C08G 73/0616 (2013.01); C08G 73/1039 (2013.01); C08G 73/1067 (2013.01); C08K 5/3445 (2013.01); B01D 53/1475 (2013.01); B01D 53/1493 (2013.01); B01D 22/25/30 (2013.01); B01D 2275/504 (2013.01); Y02C 10/10 (2013.01); Y02P 20/152 (2015.11)
Field of Classification Search
CPC
B01D 2275/504; C08G 73/1039; C08G 73/1067; C08G 73/1085; C08G 73/0616; B01J 20/262; B01J 20/264; B01J 20/28033

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,198,316 A * 3/1993 Wernet B01D 71/64
2012/0186446 A1 * 7/2012 Bara B01D 53/228

OTHER PUBLICATIONS

References Cited

OTHER PUBLICATIONS

References Cited

OTHER PUBLICATIONS

References Cited

OTHER PUBLICATIONS

* cited by examiner
1
IONIC POLYIMIDE MATERIALS AND METHODS OF USE

CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of priority to U.S. Provisional Application 62/098,068, filed Dec. 30, 2014, which is incorporated by reference herein in its entirety.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

This invention was made with government support under grant number CBET-1159397 awarded by the National Science Foundation. The government has certain rights in the invention.

FIELD

The subject matter disclosed herein generally relates to ionic polyimides, methods for the synthesis of ionic polyimides, and uses of compositions of ionic polyimides, e.g., to capture carbon dioxide.

BACKGROUND

Based on the growing concerns of the impact of rising levels of greenhouse gases (GHGs), there has been a great emphasis on developing strategies to capture carbon dioxide to help curb emissions. Current technology uses aqueous amines, such as monoethanolamine (MEA), to capture carbon dioxide (CO₂). However, aqueous amines can suffer from many deficiencies including amine degradation and solvent evaporation. Carbon dioxide (CO₂) can also be captured by a number of other methods, including using ionic liquids. Methods have been previously developed to separate CO₂ from air utilizing ionic liquids based on the high dissolution rate of CO₂ into ionic liquids. The ionic liquid can also serve as an excellent solvent environment for amines. Additionally, methods have been developed to design ionic liquids to chemically bond with CO₂ by tethering amines to one of the ionic components of an ionic liquid (see Bara et al., Acc. Chem. Res. 43 (2010) 152-159). While these materials and methods show great promise in certain applications, they can be limited in other applications, e.g., when high temperatures and/or reactive chemicals are involved. Thus what are needed are new materials than can be used to capture carbon dioxide under high temperature or other specialized conditions. The materials and methods disclosed herein address these and other needs.

SUMMARY

The present disclosure generally relates to ionic polyimides and methods for the synthesis of ionic polyimides. In some aspects, the disclosed synthetic methods can comprise a designable approach, which can allow for a greater degree of control of the structure of the ionic polyimide. In some aspects, a dianhydride can be reacted with an amine attached to an ionizable heteroaryl. The heteroaryl can then be ionized through an alkylation reaction with a molecule comprising at least two leaving groups, which can generate a polymer. Also, disclosed herein are compositions comprising an ionic polyimide. Also disclosed herein are compositions comprising an ionic polyimide and an ionic liquid. The disclosed compositions can be utilized to capture gases and methods involving such uses are disclosed herein.

Additional advantages of the disclosed compositions and methods will be set forth in part in the description which follows, and in part will be obvious from the description. The advantages of the disclosed compositions will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the disclosed compositions, as claimed.

BRIEF DESCRIPTION OF THE FIGURE

The accompanying FIGURE, which is incorporated in and constitutes a part of this specification, illustrates several aspects described below.

FIG. 1 contains photographs of ionic polyimide films neat (left, top) and with ~25 wt % “free” ionic liquid (IL) [C₂ mim][TF,N] content (left, bottom). The difference in optical clarity when “free” IL is present illustrated by the pictures on right (top: without IL) and (bottom: with IL present).

DETAILED DESCRIPTION

Provided herein are methods for synthesizing ionic polyimides, which can be designable in structure and function. Incorporating an ionic functionality can improve CO₂ absorption. Additionally, incorporating ionic functionality can allow for a tunable structure, chemical properties, and physical properties of the resulting ionic polyimide polymer. The disclosed methods of synthesizing an ionic polyimide can allow for the synthesis of new structures of polyimides. Ionic polyimides prepared by these methods, and compositions comprising such ionic polyimides (e.g., with ionic liquids) are also disclosed.

The materials, compounds, compositions, articles, and methods described herein can be understood more readily by reference to the following detailed description of specific aspects of the disclosed subject matter and the Examples and Figures included therein.

Before the present materials, compounds, compositions, articles, devices, and methods are disclosed and described, it is to be understood that the aspects described below are not limited to specific synthetic methods or specific reagents, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular aspects only and is not intended to be limiting.

Also, throughout this specification, various publications are referenced. The disclosures of these publications in their entirities are hereby incorporated by reference into this application in order to more fully describe the state of the art to which the disclosed matter pertains. The references disclosed are also individually and specifically incorporated by reference herein for the material contained in them that is discussed in the sentence in which the reference is relied upon.

General Definitions

In this specification and in the claims that follow, reference will be made to a number of terms, which shall be defined to have the following meanings:
Throughout the description and claims of this specification the word “comprise” and other forms of the word, such as “comprising” and “comprises,” means including but not limited to, and is not intended to exclude, for example, other additives, components, integers, or steps.

As used in the description and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a composition” includes mixtures of two or more such compositions, reference to “an ionic liquid” includes mixtures of two or more such ionic liquids, reference to “the compound” includes mixtures of two or more such compounds, and the like.

“Optional” or “optionally” means that the subsequently described event or circumstance can or cannot occur, and that the description includes instances where the event or circumstance occurs and instances where it does not.

Ranges can be expressed herein as from “about” one particular value, and/or to “about” another particular value. When such a range is expressed, another aspect includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another aspect. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint. It is also understood that there are a number of values disclosed herein, and that each value is also herein disclosed as “about” that particular value in addition to the value itself. For example, if the value “10” is disclosed, then “about 10” is also disclosed.

It is understood that throughout this specification the identifiers “first” and “second” are used solely to aid in distinguishing the various components and steps of the disclosed subject matter. The identifiers “first” and “second” are not intended to imply any particular order, amount, preference, or importance to the components or steps modified by these terms.

Chemical Definitions

A weight percent (wt. %) of a component, unless specifically stated to the contrary, is based on the total weight of the formulation or composition in which the component is included.

The term “ion,” as used herein, refers to any molecule, portion of a molecule, cluster of molecules, molecular complex, moiety, or atom that contains a charge (positive, negative, or both) at the same time within one molecule, cluster of molecules, molecular complex, or moiety (e.g., Zwitterions) or that can be made to contain a charge. Methods for producing a charge in a molecule, portion of a molecule, cluster of molecules, molecular complex, moiety, or atom are disclosed herein and can be accomplished by methods known in the art, e.g., protonation, deprotonation, oxidation, reduction, alkylation acetylation, esterification, de-esterification, hydrolysis, etc.

The term “anion” is a type of ion and is included within the meaning of the term “ion.” An “anion” is any molecule, portion of a molecule (e.g., Zwitterion), cluster of molecules, molecular complex, moiety, or atom that contains a net negative charge or that can be made to contain a net negative charge. The term “anion precursor” is used herein to specifically refer to a molecule that can be converted to an anion via a chemical reaction (e.g., deprotonation).

The term “cation” is a type of ion and is included within the meaning of the term “ion.” A “cation” is any molecule, portion of a molecule (e.g., Zwitterion), cluster of molecules, molecular complex, moiety, or atom, that contains a net positive charge or that can be made to contain a net positive charge. The term “cation precursor” is used herein to specifically refer to a molecule that can be converted to a cation via a chemical reaction (e.g., protonation or alkylation).

As used herein, the term “substituted” is contemplated to include all permissible substituents of organic compounds. In a broad aspect, the permissible substituents include acyclic and cyclic, branched and unbranched, carbocyclic and heterocyclic, and aromatic and nonaromatic substituents of organic compounds. Illustrative substituents include, for example, those described below. The permissible substituents can be one or more and the same or different for appropriate organic compounds. For purposes of this disclosure, the heteroatoms, such as nitrogen, can have hydrogen substituents and/or any permissible substituents of organic compounds described herein which satisfy the valencies of the heteroatoms. This disclosure is not intended to be limited in any manner by the permissible substituents of organic compounds. Also, the terms “substitution” or “substituted with” include the implicit proviso that such substitution is in accordance with permitted valence of the substituted atom and the substituent, and that the substitution results in a stable compound, e.g., a compound that does not spontaneously undergo transformation such as by rearrangement, cyclization, elimination, etc. In specific examples, when a moiety is indicated as being substituted herein, it can be substituted with one or more groups including, but not limited to, alkyl, halogenated alkyl, alkoxy, alkenyl, alkylnyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, nitro, silyl, sulfo-oxo, sulfonyle, sulfone, sulfide, or thiol groups. “A,” “A′,” “A′′,” and “A′′′,” are used herein as generic symbols to represent various specific substituents. These symbols can be any substituent, not limited to those disclosed herein, and when they are defined to be certain substituents in one instance, they can, in another instance, be defined as some other substituents.

The term “sulfonic” as used herein refers to a non-aromatic hydrocarbon group and includes branched and unbranched, alky, alkenyl, or alkynyl groups.

The term “alkyl” as used herein is a branched or unbranched saturated hydrocarbon group of 1 to 24 carbon atoms, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, dodecyl, tetradecyl, hexadecyl, eicosyl, tetracosyl, and the like. The alkyl group can also be substituted or unsubstituted. The alkyl group can be substituted with one or more groups including, but not limited to, halogenated alkyl, alkoxy, alkenyl, alkylnyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, nitro, silyl, sulfo-oxo, sulfonyle, sulfone, sulfide, or thiol, as described below.

Throughout the specification “alkyl” is generally used to refer to both unsubstituted alkyl groups and substituted alkyl groups; however, substituted alkyl groups are also specifically referred to herein by identifying the specific substituent(s) on the alkyl group. For example, the term “halogenated alkyl” specifically refers to an alkyl group that is substituted with one or more halide, e.g., fluorine, chlorine, bromine, or iodine. The term “alkoxalkyl” specifically refers to an alkyl group that is substituted with one or more alkoxy groups, as described below. The term “alkylamino” specifically refers to an alkyl group that is substituted with one or more amino groups, as described below, and the like.
When “alkyl” is used in one instance and a specific term such as “alkyl alcohol” is used in another, it is not meant to imply that the term “alkyl” does not also refer to specific terms such as “alkyl alcohol” and the like.

This practice is also used for other groups described herein. That is, while a term such as “cycloalkyl” refers to both unsubstiuted and substituted cycloalkyl moieties, the substituted moieties can, in addition, be specifically identified herein; for example, a particular substituted cycloalkyl can be referred to as, e.g., an “alkylcycloalkyl.” Similarly, a substituted alkoxy can be specifically referred to as, e.g., a “halogenated alkoxy,” a particular substituted alkenyl can be, e.g., an “alkenylalkohol,” and the like. Again, the practice of using a general term, such as “cycloalkyl,” and a specific term, such as “alkylcycloalkyl,” is not meant to imply that the general term does not also include the specific term.

The term “alkenyl” as used herein is a hydrocarbon group of from 2 to 24 carbon atoms with a structural formula containing at least one carbon-carbon double bond. Asymmetric structures such as (A)A’A”C—C(A’A”B) are intended to include both the E and Z isomers. This can be presumed in structural formulae wherein an asymmetric alkene is present, or it can be explicitly indicated by the bond symbol C—C. The alkenyl group can be substituted with one or more groups including, but not limited to, alkyl, halogenated alkyl, alkoxy, alkenyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, nitro, silyl, sulfooxo, sulfonyl, sulfone, sulfoxide, or thiol, as described below.

The term “alkynyl” as used herein is a hydrocarbon group of 2 to 24 carbon atoms with a structural formula containing at least one carbon-carbon triple bond. The alkynyl group can be substituted with one or more groups including, but not limited to, alkyl, halogenated alkyl, alkoxy, alkenyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, nitro, silyl, sulfooxo, sulfonyl, sulfone, sulfoxide, or thiol, as described below.

The term “aryl” as used herein is a group that contains any carbon-based aromatic group including, but not limited to, benzene, naphthalene, phenyl, biphenyl, phenoxazobenzene, triptycene, and the like. The term “heteroaryl” is defined as a group that contains an aromatic group that has at least one heteroatom incorporated within the ring of the aromatic group. Examples of heteroatoms include, but are not limited to, nitrogen, oxygen, sulfur, and phosphorus. Likewise, the term “non-heteroaryl,” which is also included in the term “aryl,” defines a group that contains an aromatic group that does not contain a heteroatom. The aryl or heteroaryl group can be substituted or unsubstituted. The aryl or heteroaryl group can be substituted with one or more groups including, but not limited to, alkyl, halogenated alkyl, alkoxy, alkenyl, alkynyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, nitro, silyl, sulfooxo, sulfonyl, sulfone, sulfoxide, or thiol as described herein. The term “biaryl” is a specific type of aryl group and is included in the definition of aryl. Biaryl refers to two aryl groups that are bound together via a fused ring structure, as in naphthalene, or are attached via one or more carbon-carbon bonds, as in biphenyl.

The term “cycloalkyl” as used herein is a non-aromatic carbon-based ring composed of at least three carbon atoms. Examples of cycloalkyl groups include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, etc. The term “heterocycloalkyl” is a cycloalkyl group where at least one of the carbon atoms of the ring is substituted with a heteroatom such as, but not limited to, nitrogen, oxygen, sulfur, or phosphorus. The cycloalkyl group and heterocycloalkyl group can be substituted or unsubstituted. The cycloalkyl group and heterocycloalkyl group can be substituted with one or more groups including, but not limited to, alkyl, alkoxy, alkenyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, nitro, silyl, sulfooxo, sulfonyl, sulfone, sulfoxide, or thiol as described herein.

The term “cycloalkenyl” as used herein is a non-aromatic carbon-based ring composed of at least three carbon atoms and containing at least one double bond, i.e., C=C. Examples of cycloalkenyl groups include, but are not limited to, cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexadienyl, and cycloheptadienyl, and the like.

The term “heterocycloalkenyl” is a type of cycloalkenyl group where at least one of the carbon atoms of the ring is substituted with a heteroatom such as, but not limited to, nitrogen, oxygen, sulfur, or phosphorus. The cycloalkenyl group and heterocycloalkenyl group can be substituted or unsubstituted. The cycloalkenyl group and heterocycloalkenyl group can be substituted with one or more groups including, but not limited to, alkyl, alkoxy, alkenyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, nitro, silyl, sulfooxo, sulfonyl, sulfone, sulfoxide, or thiol as described herein.

The term “cyclic group” is used herein to refer to either aryl groups, non-aryl groups (i.e., cycloalkyl, heterocycloalkyl, cycloalkenyl, and heterocycloalkenyl groups), or both. Cyclic groups have one or more ring systems that can be substituted or unsubstituted. A cyclic group can contain one or more aryl groups, one or more non-aryl groups, or one or more aryl and non-aryl groups.

The term “aldehyde” as used herein is represented by the formula —C(OH). Throughout this specification “C(O)” is a short hand notation for —C=O.

The terms “amine” or “amino” as used herein are represented by the formula NAA’A”A”, where A”, A”, and A” can be, independently, hydrogen, an alkyl, halogenated alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, cycloalkenyl, heterocycloalkyl, or heterocycloalkenyl group described above.

The term “carboxylic acid” as used herein is represented by the formula —C(OH). A “carboxylate” as used herein is represented by the formula —C(O)O-.

The term “ester” as used herein is represented by the formula —OC(O)A” or —C(O)OA”, where A” can be an alkyl, halogenated alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, cycloalkenyl, heterocycloalkyl, or heterocycloalkenyl group described above.

The term “ether” as used herein is represented by the formula A”OA” where A” and A” can be, independently, an alkyl, halogenated alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, cycloalkenyl, heterocycloalkyl, or heterocycloalkenyl group described above.

The term “ketone” as used herein is represented by the formula A”C(O)A” where A” and A” can be, independently, an alkyl, halogenated alkyl, alkenyl, alkynyl, aryl, heteroaryl, cycloalkyl, cycloalkenyl, heterocycloalkyl, or heterocycloalkenyl group described above.

The term “halide” as used herein refers to the halogens fluorine, chlorine, bromine, and iodine.

The term “hydroxyl” as used herein is represented by the formula —OH.

The term “nitro” as used herein is represented by the formula —NO2.

The term “silyl” as used herein is represented by the formula —SiA”A”A”, where A”, A”, and A” can be, inde-
The term “anhydride” as used herein is represented by the formula \(A' - \text{CO}(\text{O})\text{OC}(\text{O}) - A'' \), where \(A' \) and \(A'' \) can be independently, hydrogen, alkyl, halogenated alkyl, alkoxy, alkyl, alkenyl, acryloyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, or heterocycloalkenyl group described above.

The term “imidocarbonate” is used herein to represent the formula \(A'' - \text{C}(\text{O})\text{O}(\text{O}) - A' \), where \(A' \) and \(A'' \) can be independently, hydrogen, alkyl, halogenated alkyl, alkoxy, alkyl, alkenyl, acryloyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, or heterocycloalkenyl group described above.

\[A', \; A'', \; A'_1, \; A''_1, \; A'_2, \; A''_2, \ldots \text{ etc., where } n \text{ is some integer, as used herein can, independently, possess one or more of the groups listed above. For example, if } A' \text{ is a straight chain alkyl group, one of the hydrogen atoms of the alkyl group can optionally be substituted with a hydroxyl group, an alkoxy group, an amine group, an alkyl group, a halide, and the like. Depending upon the groups that are selected, a first group can be incorporated within second group or, alternatively, the first group can be pendant (i.e., attached) to the second group. For example, with the phrase “an alkyl group comprising an amino group,” the amino group can be incorporated within the backbone of the alkyl group. Alternatively, the amino group can be attached to the backbone of the alkyl group. The nature of the group(s) that is (are) selected will determine if the first group is embedded or attached to the second group.

As used herein, substantially pure means sufficiently homogeneous to appear free of readily detectable impurities as determined by standard methods of analysis, such as thin layer chromatography (TLC), nuclear magnetic resonance (NMR), gel electrophoresis, high performance liquid chromatography (HPLC), and mass spectrometry (MS), gas chromatography mass spectrometry (GC-MS), and similar, used by those of skill in the art to assess such purity, or sufficiently pure such that further purification would not detectably alter the physical and chemical properties, such as enzymatic and biological activities, of the subs

Materials and Compositions

Certain materials, compounds, compositions, and components disclosed herein can be obtained commercially or readily synthesized using techniques generally known to those of skill in the art. For example, the starting materials and reagents used in preparing the disclosed compounds and compositions are either available from commercial suppliers such as Aldrich Chemical Co., (Milwaukee, Wis.), Acros Organics (Morris Plains, N.J.), Fisher Scientific (Pittsburgh, Pa.), Sigma (St. Louis, Mo.), or are prepared by methods known to those skilled in the art following procedures set forth in references such as Fieser and Fieser’s Reagents for Organic Synthesis, Volumes 1-17 (John Wiley and Sons, 1991); Rod’s Chemistry of Carbon Compounds, Volumes 1-5 and Supplementals (Elsevier Science Publishers, 1989); Organic Reactions, Volumes 1-40 (John Wiley and Sons, 1991); March’s Advanced Organic Chemistry, (John Wiley and Sons, 4th Edition); and Larock’s Comprehensive Organic Transformations (VCH Publishers Inc., 1989). Other materials, such as the ligands, disclosed herein can be obtained from commercial sources.

Ionic Polymides

One class of polymers that has been utilized previously for its high thermal stability and low chemical reactivity is polyimides. Polymides are polymers comprising repeating imide monomers. The primary method for the synthesis of polyimides has been through a two-step reaction between dianhydrides and diamines as seen in Scheme 1, which represents a condensation reaction. (See Scroog, Prog. Polym. Sci. 16 (1991) 561-694.)

One challenge with polyimide design is that it is limited to the design of either one of the two starting components: the dianhydride or the diamine. Thus, only the molecular structure between the two amine functional groups or between the two anhydride functional groups can be altered to change the properties of the polyimide.

Disclosed herein are methods to design a greater range of polyimides that can be utilized for carbon capture, in high temperature applications, and as lubricants, among other uses. By incorporating ionic functionality, an additional level of structural and spatial control can be implemented to potentially improve CO\(_2\) capture, the mechanical properties, or the chemical properties of the polyimides.

Polyimides can be desirable for gas separation membranes due their high gas permeability, intrinsic selectivity and potentially desirable physical properties. Polyimides such as MATRIMID™ and KAPTON™ were developed for use in microelectronics and as thermal insulators. Wholly aromatic polyimides such as these can be synthesized via an initial condensation of a diamine with a dianhydride at near ambient temperature, followed by thermal imidization at higher temperature. MATRIMID™ and UPLLEX™ can be useful for gas separations in commercial gas separation applications (e.g. H\(_2\)/CH\(_4\), CO\(_2\)/CH\(_4\), O\(_2\)/N\(_2\), etc.) based on their ability to be processed into high quality films and fibers, even though their CO\(_2\) permeabilities tend to be less than 20 Barrer, and well below Robeson’s Upper Bounds.

Recent developments in polyimide design have revolved around the use of the fluorinated dianhydride, 6-FDA, with bulky aromatic diamines. These materials have have higher CO\(_2\) permeabilities (500-700 Barrer) due to the large disruptions in chain packing (and increased FFV) caused by -CF\(_3\) groups and multiple -CH\(_2\) groups present on aromatic diamines such as durene diamine. The inclusion of very bulky triptycene linkages within the polyimide backbone can increase the performance of polyimides with CO\(_2\) permeabilities approaching 3000 Barrers having been reported very recently (see Swaidan et al., Macromolecules 47 (2014) 5104-14).

Although seemingly two disparate classes of materials, ionic liquids (ILs) and rigid polyimides are integrated
herein, resulting in so-called ionic polyimides. Furthermore, the ionic polyimides can be more than the sum of their parts—rigid ionic polyimides can form unique, ordered nanostructures that are not present in either of the parent materials.

In specific aspects, disclosed herein are ionic polyimides and compositions thereof. In some examples the ionic polyimides can be represented by Formula I:

![Formula I](image)

wherein each dotted line represents an optional bond; Y is null, H, halogen, OH, CH, CH₂, C(O), O, S, SO₂, N, NH, NH₂, NH₃, CN, CR, CHO, CR₂, OR, OR₂, OR₃, CH₂, O, S, SO₂, N, NH, NH₂, NH₃, CN, CR, CHO, CR₂, OR, OR₂, OR₃, substituted or unsubstituted C₁₋₂₀ alkyl, substituted or unsubstituted C₂₋₂₀ alkenyl, substituted or unsubstituted C₂₋₂₀ cycloalkyl, substituted or unsubstituted heteroaryl, or mixtures thereof; wherein any of the substituted groups named can be substituted with one or more of alkyl, halogen, alkoxy, alkenyl, alkynyl, aryloxy, aryloxyl, aldehyde, amino, carboxylic acid anhydride, ester, ether, halide, hydroxy, ketone, nitro, silyl, sulfo-oxo, sulfonyl, sulfone, sulfoxide, or thiol groups;

Q is substituted or unsubstituted pyrazolium, substituted or unsubstituted pyridinium, substituted or unsubstituted pyrazinium, substituted or unsubstituted pyridinium, substituted or unsubstituted pyridazinium, substituted or unsubstituted piperidinium, substituted or unsubstituted pyrrolidinium, substituted or unsubstituted indolizinium, substituted or unsubstituted indolinium, substituted or unsubstituted indolium, substituted or unsubstituted indazolin, substituted or unsubstituted imidazolium, substituted or unsubstituted oxazolium, substituted or unsubstituted triazolium, substituted or unsubstituted tetrazolium, substituted or unsubstituted thiazolium, substituted or unsubstituted purinum, substituted or unsubstituted purinium, substituted or unsubstituted quinoxalin, substituted or unsubstituted quinolinum, substituted or unsubstituted quinolinium, substituted or unsubstituted phthalazinum, substituted or unsubstituted quinacridinum, substituted or unsubstituted phenazinum, substituted or unsubstituted morpholinum, or mixtures thereof; wherein any of the substituted groups named can be substituted with one or more alkyl, halogen, alkoxy, alkenyl, alkynyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, nitro, silyl, sulfo-oxo, sulfonyl, sulfone, sulfoxide, or thiol groups.

A is chloride, bromide, iodide, nitrate, dicyanamide, acetate, bis(trifluoromethanesulfonyl)imide, hexafluorophosphate, tetrafluoroborate, sulfate, phosphate, trifluoromethanesulfonate, trifluoromethanesulphonate, aluminum chloride, thiocyanide, mesylate, trflate, or tosylate.

n is an integer between 1 and 100,000. In certain examples, Z is substituted or unsubstituted triptycene.

In specific examples of Formula I, L₁ is a branched or straight chain C₁₋₁₀ alkyl. In other specific examples of Formula I, Q is unsubstituted or substituted imidazolium. In other examples of Formula I, L₂ is an unsubstituted or substituted aryl, branched or straight chain C₁₋₁₀ alkyl, or C₁₋₁₀ heteroaryl.

The ionic polyimides disclosed herein can be divided into subclasses of compounds based on the atoms between the two imide functional groups. One subclass of ionic polyimides can be represented by Formula II-A:

![Formula II-A](image)
wherein L^1 is null, CH$_2$, C(O), O, S, SO$_2$, substituted or unsubstituted C$_{1-20}$ alkyl, substituted or unsubstituted C$_{2-20}$ alkenyl, substituted or unsubstituted C$_{2-20}$ alkynyl, substituted or unsubstituted C$_{2-20}$ heteroalkyl, substituted or unsubstituted C$_{2-20}$ heteroalkenyl, substituted or unsubstituted C$_{2-20}$ heteroalkynyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, or mixtures thereof, wherein any of the substituted groups named can be substituted with one or more of alkyl, halogen, alkoxy, alkenyl, alkynyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, nitro, silyl, sulf-o-oxo, sulfonyl, sulfone, sulfoxide, or thiol groups;

L^2 is null, CH$_2$, C(O), O, S, SO$_2$, substituted or unsubstituted C$_{2-20}$ alkyl, substituted or unsubstituted C$_{2-20}$ alkenyl, substituted or unsubstituted C$_{2-20}$ alkynyl, substituted or unsubstituted C$_{2-20}$ heteroalkyl, substituted or unsubstituted C$_{2-20}$ heteroalkenyl, substituted or unsubstituted C$_{2-20}$ heteroalkynyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, or mixtures thereof, wherein any of the substituted groups named can be substituted with one or more of alkyl, halogen, alkoxy, alkenyl, alkynyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, nitro, silyl, sulf-o-oxo, sulfonyl, sulfone, sulfoxide, or thiol groups;

Q is substituted or unsubstituted pyrazolinium, substituted or unsubstituted pyridinium, substituted or unsubstituted pyridazinium, substituted or unsubstituted pyrimidinium, substituted or unsubstituted pyridinium, substituted or unsubstituted piperidinium, substituted or unsubstituted pyrrolidinium, substituted or unsubstituted indolizinium, substituted or unsubstituted isatin, substituted or unsubstituted indolium, substituted or unsubstituted indazolium, substituted or unsubstituted imidazolium, substituted or unsubstituted oxazolium, substituted or unsubstituted triazolium, substituted or unsubstituted tetrazolium, substituted or unsubstituted thiazolium, substituted or unsubstituted purinium, substituted or unsubstituted isquinolinium, substituted or unsubstituted quinolinium, substituted or unsubstituted phenazinium, substituted or unsubstituted phenoxazinum, substituted or unsubstituted morpholinium, or mixtures thereof, wherein any of the substituted groups named can be substituted with one or more alkyl, halogen, alkoxy, alkenyl, alkynyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, nitro, silyl, sulf-o-oxo, sulfonyl, sulfone, sulfoxide, or thiol groups;

A is chloride, bromide, iodide, nitrate, dicyanamide, acetate, bis(trifluoromethane)sulfonamide, hexafluorophosphate, tetrafluoroborate, sulfate, phosphate, tris(perfluoroalkyl) trifluorophosphates, mesylate, triflate, or tosylate.

n is an integer between 1 and 100,000.

In some examples, Q can be an unsubstituted or substituted imidazolium functional group, which can be represented by Formula II-A-1:

wherein L^1 is null, CH$_2$, C(O), O, S, SO$_2$, substituted or unsubstituted C$_{1-20}$ alkyl, substituted or unsubstituted C$_{2-20}$ alkenyl, substituted or unsubstituted C$_{2-20}$ alkynyl, substituted or unsubstituted C$_{2-20}$ heteroalkyl, substituted or unsubstituted C$_{2-20}$ heteroalkenyl, substituted or unsubstituted C$_{2-20}$ heteroalkynyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, or mixtures thereof, wherein any of the substituted groups named can be substituted with one or more of alkyl, halogen, alkoxy, alkenyl, alkynyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, nitro, silyl, sulf-o-oxo, sulfonyl, sulfone, sulfoxide, or thiol groups;

L^2 is null, CH$_2$, C(O), O, S, SO$_2$, substituted or unsubstituted C$_{2-20}$ alkyl, substituted or unsubstituted C$_{2-20}$ alkenyl, substituted or unsubstituted C$_{2-20}$ alkynyl, substituted or unsubstituted C$_{2-20}$ heteroalkyl, substituted or unsubstituted C$_{2-20}$ heteroalkenyl, substituted or unsubstituted C$_{2-20}$ heteroalkynyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, or mixtures thereof, wherein any of the substituted groups named can be substituted with one or more of alkyl, halogen, alkoxy, alkenyl, alkynyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, nitro, silyl, sulf-o-oxo, sulfonyl, sulfone, sulfoxide, or thiol groups;

R', R2, and R3 are, independent of any other, H, substituted or unsubstituted C$_{1-20}$ alkyl, substituted or unsubstituted C$_{2-20}$ alkenyl, substituted or unsubstituted C$_{2-20}$ alkynyl, substituted or unsubstituted C$_{2-20}$ heteroalkyl, substituted or unsubstituted C$_{2-20}$ heteroalkenyl, substituted or unsubstituted C$_{2-20}$ heteroalkynyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, or mixtures thereof, wherein any of the substituted groups named can be substituted with one or more of alkyl, halogen, alkoxy, alkenyl, alkynyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, nitro, silyl, sulf-o-oxo, sulfonyl, sulfone, sulfoxide, or thiol groups;

A is chloride, bromide, iodide, nitrate, dicyanamide, acetate, bis(trifluoromethane)sulfonamide, hexafluorophosphate, tetrafluoroborate, sulfate, phosphate, tris(perfluoroalkyl) trifluorophosphates, mesylate, triflate, or tosylate.

n is an integer from 1 to 100,000.

In some examples L', can be an unsubstituted or substituted phenyl functional group, which can be represented by Formula II-A-2:
of the substituted groups named can be substituted with one or more alkyl, halogen, haloalkyl, alkenyl, alkynyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, nitro, silyl, sulfo-oxo, sulfonyl, sulfone, sulfoxide, or thiol groups.

A is chloride, bromide, iodide, nitrate, dicyanamide, acetate, bis(trifluoromethane)sulfonamide, hexafluorophosphate, tetrafluoroborate, sulfate, phosphate, (tris(perfluoroalkyl)trifluorophosphatemesylate), aluminum chloride, thiocyanide, mesylate, triflate, or tosylate.

n is an integer from 1 to 100,000.

In some examples, Q can be an unsubstituted or substituted imidazolium functional group, L^1 can be propyl, and L^2 can be derived from 1,4-dichlorodurene, which can be represented by Formula II-B:

wherein R^1, R^2, and R^3 are independent of any other, H, substituted or unsubstituted C1-20 alkyl, substituted or unsubstituted C2-20 alkenyl, substituted or unsubstituted C2-20 alkynyl, substituted or unsubstituted C1-20 heteroalkyl, substituted or unsubstituted C2-20 heteroaryl, or mixtures thereof, wherein any of the substituted groups named can be substituted with one or more of alkyl, halogen, haloalkyl, alkenyl, alkynyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, nitro, silyl, sulfo-oxo, sulfonyl, sulfone, sulfoxide, or thiol groups;
wherein n is an integer from 1 to 100,000.

One subclass of ionic polymides can be represented by Formula III, wherein a functional group, B, bridges two phenyl functional groups:

wherein B is halogen, OH, CH, CH₂, C(O), O, S, SO₂, N, NH, NH₂, NHR⁻, CN, CR⁻, CHR⁻, CR⁻₂, OR⁻, or C(CF₃)₂;
each R¹ is, independent of any other, H, substituted or unsubstituted C₃₋₅ alkyl, substituted or unsubstituted C₂₋₅ alkynyl, substituted or unsubstituted C₂₋₅ alkenyl, substituted or unsubstituted C₁₋₅ heteroalkyl, substituted or unsubstituted C₂₋₅ heteroalkenyl, substituted or unsubstituted C₂₋₅ heterocycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, or mixtures thereof; wherein any of the substituted groups named can be substituted with one or more of alkyl, halogen, alkoxy, alkenyl, alkylnl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, nitro, silyl, sulfo-oxo, sulfonyl, sulfone, sulfoxide, or thiol groups;

L¹ is null, CH₂, C(O), O, S, SO₂, substituted or unsubstituted C₁₋₅ alkyl, substituted or unsubstituted C₂₋₅ alkenyl, substituted or unsubstituted C₂₋₅ alkynyl, substituted or unsubstituted C₁₋₅ heteroalkyl, substituted or unsubstituted C₂₋₅ heteroalkenyl, substituted or unsubstituted C₂₋₅ heterocycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, or mixtures thereof; wherein any of the substituted groups named can be substituted with one or more of alkyl, halogen, alkoxy, alkenyl, alkylnl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, nitro, silyl, sulfo-oxo, sulfonyl, sulfone, sulfoxide, or thiol groups;

L² is null, CH₂, C(O), O, S, SO₂, substituted or unsubstituted C₁₋₅ alkyl, substituted or unsubstituted C₂₋₅ alkenyl, substituted or unsubstituted C₂₋₅ alkynyl, substituted or unsubstituted C₁₋₅ heteroalkyl, substituted or unsubstituted C₂₋₅ heteroalkenyl, substituted or unsubstituted C₂₋₅ heterocycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, or mixtures thereof; wherein any of the substituted groups named can be substituted with one or more of alkyl, halogen, alkoxy, alkenyl, alkylnl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, nitro, silyl, sulfo-oxo, sulfonyl, sulfone, sulfoxide, or thiol groups;

Q is substituted or unsubstituted pyrazolium, substituted or unsubstituted pyridinium, substituted or unsubstituted pyrazinium, substituted or unsubstituted pyridinium, substituted or unsubstituted pyridazinium, substituted or unsubstituted piperidinium, substituted or unsubstituted pyrrolidinium, substituted or unsubstituted indolizinium, substituted or unsubstituted isoindolium, substituted or unsubstituted indolium, substituted or unsubstituted indazolinum, substituted or unsubstituted imidazolium, substituted or unsubstituted oxazolium, substituted or unsubstituted triazolium, substituted or unsubstituted tetrazolium, substituted or unsubstituted thiazolium, substituted or unsubstituted purium, substituted or unsubstituted isquinolinium, substituted or unsubstituted quinolinium, substituted or unsubstituted phthalazinium, substituted or unsubstituted quinoxalinium, substituted or unsubstituted phenazinesium, substituted or unsubstituted morpholinium, or mixtures thereof; wherein any of the substituted groups named can be substituted with one or more of alkyl, halogen, alkoxy, alkenyl, alkylnl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, nitro, silyl, sulfo-oxo, sulfonyl, sulfone, sulfoxide, or thiol groups;

A is chloride, bromide, iodide, nitrate, dicyanamide, acetate, bis(trihloromethane)sulfonamide, hexafluorophosphate, tetrafluoroborate, sulfate, phosphate, tri(is(peri)fluoroalkyl) trifluorophosphatemesylate, aluminum chloride, thiocyanide, mesylate, triflate, or tosylate.

n is an integer between 1 and 100,000.

In some examples, Q can be an unsubstituted or substituted imidazolium functional group, which can be represented by Formula III-A:
wherein B is halogen, OH, CH, CH₂, C(O), O, S, SO₂, N, NH, NH₂, NHR, CN, CR₁, CR₁R₂, OR, or C(CF₃)₂;

each R¹ is, independent of any other, H, substituted or unsubstituted C₁₋₂₀ alkyl, substituted or unsubstituted C₂₋₂₀ alkenyl, substituted or unsubstituted C₂₋₂₀ alkynyl, substituted or unsubstituted C₁₋₂₀ heteroalkyl, substituted or unsubstituted C₂₋₂₀ heteroalkenyl, substituted or unsubstituted C₂₋₂₀ heteroalkynyl, substituted or unsubstituted C₂₋₂₀ heterocycloalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, or mixtures thereof, wherein any of the substituted groups named can be substituted with one or more of alkyl, halogen, alkoxyl, alkenyl, alkynyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, nitro, silyl, sulfo-oxo, sulfonyl, sulfone, sulfoxide, or thiol groups;

each R¹, R², and R³ is, independent of any other, H, substituted or unsubstituted C₁₋₂₀ alkyl, substituted or unsubstituted C₂₋₂₀ alkenyl, substituted or unsubstituted C₂₋₂₀ alkynyl, substituted or unsubstituted C₁₋₂₀ heteroalkyl, substituted or unsubstituted C₂₋₂₀ heteroalkenyl, substituted or unsubstituted C₂₋₂₀ heteroalkynyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, or mixtures thereof, wherein any of the substituted groups named can be substituted with one or more of alkyl, halogen, alkoxyl, alkenyl, alkynyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, nitro, silyl, sulfo-oxo, sulfonyl, sulfone, sulfoxide, or thiol groups;

L¹ is null, CH₂, C(O), O, S, SO₂, substituted or unsubstituted C₁₋₂₀ alkyl, substituted or unsubstituted C₂₋₂₀ alkenyl, substituted or unsubstituted C₂₋₂₀ alkynyl, substituted or unsubstituted C₁₋₂₀ heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, or mixtures thereof, wherein any of the substituted groups named can be substituted with one or more of alkyl, halogen, alkoxyl, alkenyl, alkynyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, nitro, silyl, sulfo-oxo, sulfonyl, sulfone, sulfoxide, or thiol groups;

A is chloride, bromide, iodide, nitrate, dicyanamide, acctate, bis(trifluoromethane)sulfonamide, hexafluorophosphate, tetrafluoroborate, sulfate, phosphate, tris(perfluoroalkyl)trifluorophosphate, aluminum chloride, thiocyanide, mesylate, triflate, or tosylate.

n is an integer between 1 and 100,000.

In some examples, Q can be an unsubstituted or substituted imidazolium functional group, L¹ can be propyl, and L² can be derived from 1,4-dichlorobenzene, which can be represented by Formula III-B:
wherein B is halogen, OH, CH, CH₂, C(O), O, S, SO₂, N, NH, NH₂, NHR¹¹, CN, C R¹¹, CHR¹¹, CR¹¹₂, OR¹¹, or C(CF₃)₂;
each R¹¹ is, independent of any other, H, substituted or unsubstituted C₁₋₂₀ alkyl, substituted or unsubstituted C₂₋₂₀ alkenyl, substituted or unsubstituted C₂₋₂₀ alkynyl, substituted or unsubstituted C₁₋₂₀ heteroalkyl, substituted or unsubstituted C₂₋₂₀ heteroalkenyl, substituted or unsubstituted C₂₋₂₀ heteroalkynyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, or mixtures thereof, wherein any of the substituted groups named can be substituted with one or more of alkyl, halogen, alkoxy, alkenyl, alkynyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, nitro, silyl, sulfo-oxo, sulfonyl, sulfone, sulfonamide, or thiol groups;
each R¹, R², and R³ are, independent of any other, H, substituted or unsubstituted C₁₋₂₀ alkyl, substituted or unsubstituted C₂₋₂₀ alkenyl, substituted or unsubstituted C₂₋₂₀ alkynyl, substituted or unsubstituted C₂₋₂₀ heteroalkyl, substituted or unsubstituted C₂₋₂₀ heteroalkenyl, substituted or unsubstituted C₂₋₂₀ heteroalkynyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, or mixtures thereof, wherein any of the substituted groups named can be substituted with one or more of alkyl, halogen, alkoxy, alkenyl, alkynyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, nitro, silyl, sulfo-oxo, sulfonyl, sulfone, sulfonamide, or thiol groups; and

A is chloride, bromide, iodide, nitrate, dicyanamide, acetate, bis(trifluoromethane)sulfonamide, hexafluorophosphate, tetrafluoroborate, sulfate, phosphate, tris(perfluoralkyl)trifluorophosphatemesylate, aluminum chloride, thiocyanide, mesylate, triflate, or tosylate.

n is an integer from 1 to 100,000.

In some examples, Q can be an unsubstituted or substituted imidazolium functional group, L¹ can be propyl, L² can be derived from 1,4-dichlorodurene, R¹ can be methyl, R² can be methyl, R³ can be methyl, and A can be bis(trifluoromethane)sulfonamide, which can be represented by Formula III-C:

wherein B is halogen, OH, CH, CH₂, C(O), O, S, SO₂, N, NH, NH₂, NHR¹¹, CN, C R¹¹, CHR¹¹, CR¹¹₂, OR¹¹, or C(CF₃)₂;
each R¹¹ is, independent of any other, H, substituted or unsubstituted C₁₋₂₀ alkyl, substituted or unsubstituted C₂₋₂₀ alkenyl, substituted or unsubstituted C₂₋₂₀ alkynyl, substituted or unsubstituted C₁₋₂₀ heteroalkyl, substituted or unsubstituted C₂₋₂₀ heteroalkenyl, substituted or unsubstituted C₂₋₂₀ heteroalkynyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, or mixtures thereof, wherein any of the substituted groups named can be substituted with one or more of alkyl, halogen, alkoxy, alkenyl, alkynyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, nitro, silyl, sulfo-oxo, sulfonyl, sulfone, sulfonamide, or thiol groups;

n is an integer from 1 to 100,000.

In some examples, Q can be an unsubstituted or substituted imidazolium functional group, L¹ can be propyl, L² can be derived from 1,4-dichlorodurene, R¹ can be methyl, R² can be methyl, R³ can be methyl, A can be bis(trifluoromethane)sulfonamide and B can be —C(CF₃)₂, which can be represented by Formula III-D:
wherein n is an integer from 1 to 100,000.

Synthesis of an Ionic Polyimide

Also, disclosed herein are methods for synthesizing an ionic polyimide comprising an ionized heteroaryl. The methods disclosed herein comprise at least four components: (1) a dianhydride, (2) an amine tethered to an ionizable heteroaryl, (3) an alkylating agent, and (4) an anion. In some aspects, the disclosed method can generate an ionic polyimide by reacting the amine tethered to an ionizable heteroaryl to generate a bridging monomer. (See Scheme 10.) The bridging monomer can be reacted with an alkylating reagent to generate a repeating pattern. The anion can be optionally exchanged.

Dianhydride

A dianhydride can be utilized to generate an ionic polyimide. A dianhydride molecule comprises two anhydride functional groups. The molecular structure between the two anhydride functional groups can be altered to adjust the resulting ionic polyimide’s properties, such as thermal stability, chemical reactivity, viscosity, and melting point, among other chemical and physical properties. For example, incorporating an aryl functional group into the dianhydride functional group can lead to greater thermal stability based on the stacking of the pi systems as a polymer.

Some suitable examples of dianhydrides include, but are not limited to, Benzoquinonetetracarboxylic dianhydride (BQDA), Ethylenetetracarboxylic dianhydride (EDA), Naphthalenetetracarboxylic dianhydride (NDA), Pyromellitic dianhydride (PMDA), Dioxane tetaketone (DTK), 3,3’, 4,4’-Diphenylsulfone tetracarboxylic dianhydride (DSPDA), 3,3’, 4,4’-Benzoephonone tetracarboxylic dianhydride (BTD), 3,3’, 4,4’-Biphenyl tetracarboxylic dianhydride (s-BPDA), 2,2’-Bis-(3,4-Dicarboxyphenyl) hexafluoropropane dianhydride (6-FDA), 4,4’-Oxydiphenyl anhydride (ODPA), 4,4’, Bisphenol A dianhydride (BPDA), Hydroquinone diphenyl anhydride (HQDEA), TRIPDA, and PIMDA. Some of these examples are illustrated in Scheme 2. Although some examples of the dianhydride component are given in Scheme 2, any dianhydride can be selected.

In some other examples, suitable dianhydrides that can be used in the disclosed methods are represented by Formula IV.
Copyright © 2023. All Rights Reserved.
Amine

The disclosed methods also use a monoamine. In previous synthetic strategies, a diamine has been utilized. However, the reaction between a diamine and a dianhydride can cause polymerization. Instead, if a molecule with a single amine functional group is used, polymerization is disfavored. A reaction between two molecules that comprise a monoamine and a dianhydride results in a monomer containing two imide functional groups. (See Scheme 10.) This monomer can act as a "bridge" between the ionized groups.

Attached to the monoamine is a functional group that is capable of ionizing. One such class of compounds that can be ionized are heteroaryls. If the amine functional group is tethered to a heteroaryl, it provides a molecule that can generate an imide monomer while still having the capability to be ionized. (See Scheme 3.)

In some examples, suitable amines that can be used in the disclosed methods are represented by Formula V:

\[
\begin{align*}
\text{H}_2N & \quad \overset{\text{Q}}{\text{Q}} \quad \text{NH}_2
\end{align*}
\]

wherein \(L^1\) is null, \(\text{CH}_2\), \(\text{C}(\text{O})\), \(\text{O}\), \(\text{S}\), \(\text{SO}_2\), substituted or unsubstituted \(\text{C}_{1-20}\) alkyl, substituted or unsubstituted \(\text{C}_{2-20}\) alkenyl, substituted or unsubstituted \(\text{C}_{3-20}\) alkylnyl, substituted or unsubstituted \(\text{C}_{1-20}\) heteroalkyl, substituted or unsubstituted \(\text{C}_{2-20}\) heteroalkenylnyl, substituted or unsubstituted \(\text{C}_{2-20}\) heteroalkynyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, or mixtures thereof, wherein any of the substituted groups named can be substituted with one or more of alkyl, halogen, alkoxy, alkenyl, alkynyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, nitro, silyl, sulfo-oxo, sulfonyl, sulfoxide, or thiol groups;

\(Q\) is substituted or unsubstituted pyrazoles, substituted or unsubstituted pyridines, substituted or unsubstituted pyrazines, substituted or unsubstituted pyrimidines, substituted or unsubstituted pyridazines, substituted or unsubstituted piperidines, substituted or unsubstituted pyrrolidines, substituted or unsubstituted indolizines, substituted or unsubstituted isoindoles, substituted or unsubstituted indazoles, substituted or unsubstituted imidazoles, substituted or unsubstituted oxazoles, substituted or unsubstituted tetrazoles, substituted or unsubstituted thiazoles, substituted or unsubstituted oxazoles, substituted or unsubstituted thiazoles, substituted or unsubstituted purines, substituted or unsubstituted isoquinolines, substituted or unsubstituted quinolines, substituted or unsubstituted phthalazines, substituted or unsubstituted quinoxalines, substituted or unsubstituted phenazines,
Some suitable classes of monoamines are shown in Scheme 3. The monoamine can be attached to a variety of heteroaryl groups, such as but not limited to, azoles, imidazoles, 1,2,3-triazoles, 1,2,4-triazoles, tetrazoles, pyridines, piperidines, pyrroldinines, and pyrazoles. The heteroaryl can be substituted with one or more functional groups, such as alkyl, halogen, alkoxy, alkenyl, alkynyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, nitro, silyl, sulfo-oxo, sulfonyl, sulfone, sulfoxide, or thiol groups.

The amine group can be directly attached to the heteroaryl or attached by a bridge. The bridge can be attached to a heteroatom or any one of the carbon atoms on the heteroaryl. The resulting reaction between the monoamine and the diimide can generate a bridging monomer, which can be polymerized through a reaction with an alkylating agent.

Two-Step Synthesis of Bridging Monomer

In some embodiments, an amine attached to a leaving group can react with a diimide to form an imide (Scheme 7). In some examples, suitable amines attached to a leaving group that can be used in the disclosed methods are represented by Formula VI:

\[
\begin{align*}
& R_1, R_2, R_3, R_4, R_5, R_6, R_7, R_8, R_9, R_{10}, R_{11}, R_{12}
\end{align*}
\]

Wherein \(L^1\) is null, \(\text{CH}_2\), \(\text{C(O)}\), \(\text{O}\), \(\text{S}\), \(\text{SO}_2\), substituted or unsubstituted \(\text{C}_{1-20}\) alkyl, substituted or unsubstituted \(\text{C}_{2-20}\) alkenyl, substituted or unsubstituted \(\text{C}_{2-20}\) alkynyl, substituted or unsubstituted \(\text{C}_{2-20}\) heteroalkyl, substituted or unsubstituted \(\text{C}_{1-20}\) heteroalkynyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, or mixtures thereof, wherein any of the substituted groups named can be substituted with one or more of alkyl, halogen, alkoxy, alkynyl, alkynyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, nitro, silyl, sulfo-oxo, sulfone, sulfoxide, or thiol groups; and

\(X\) is \(\text{Cl}\), \(\text{Br}\), \(\text{I}\), \(\text{O}\), \(\text{O-Ph-SO}_2\text{CH}_3\), \(\text{SO}_2\text{CH}_3\), or \(\text{SO}_2\text{CH}_2\).

The leaving group, \(X\), can then react with an ionizable heteroaryl, \(Q\), to form the bridging monomer, wherein \(Q\) is substituted or unsubstituted pyrazoles, substituted or unsubstituted pyridines, substituted or unsubstituted pyrimidines, substituted or unsubstituted pyridazines, substituted or unsubstituted pyrrolidines, substituted or unsubstituted indolizines, substituted or unsubstituted isoindoles, substituted or unsubstituted indoles, substituted or unsubstituted indazoles, substituted or unsubstituted oxazoles, substituted or unsubstituted triazoles, substituted or unsubstituted tetrazoles, substituted or unsubstituted thiazoles, substituted or unsubstituted purines, substituted or unsubstituted isoquinolines, substituted or unsubstituted quinolines, substituted or unsubstituted phthalazines, substituted or unsubstituted quinoxalines, substituted or unsubstituted phenazines, substituted or unsubstituted morpholinines, or mixtures thereof, wherein any of the substituted groups named can be substituted with one or more alkyl, halogen, alkoxy, alkynyl, alkynyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, nitro, silyl, sulfo-oxo, sulfonyl, sulfone, sulfoxide, or thiol groups.

Alkylating Agent

If the alkylating agent is capable of two alkylation reactions, the alkylating agent can serve to connect the bridging monomers into dimers, trimers, and ultimately a polymer. The growth of the polymer can result from such a reaction as disclosed herein.

In some examples, suitable alkylating agents that can be used in the disclosed methods are represented by Formula VII:

\[
\begin{align*}
& X^+_{12} X^- \\
& \text{wherein } L^2 \text{ is substituted or unsubstituted } \text{C}_{1-20} \text{ alkyl, substituted or unsubstituted } \text{C}_{2-20} \text{ alkenyl, substituted or unsubstituted } \text{C}_{2-20} \text{ alkynyl, substituted or unsubstituted } \text{C}_{1-20} \text{ heteroalkyl, substituted or unsubstituted } \text{C}_{2-20} \text{ heteroalkynyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted heteroalkynyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, or}
\end{align*}
\]
mixtures thereof, wherein any of the substituted groups named can be substituted with one or more of alkyl, halogen, alkoxyl, alkenyl, alkynyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, nitro, silyl, sulfo-oxy, sulfonyl, sulfone, sulf oxide, or thiol groups; and

X is Cl, Br, I, O, O-Ph-SO₂CH₃, SO₂CH₃, or SO₃CH₃.

Possible examples of suitable alkylling agents are show in Scheme 4. In some aspects, the alkylling agent comprises at least two leaving groups. Some leaving groups include, but are not limited to, chlorine, bromine, iodine, methanesulfonyl(mesylate), trifluoromethanesulfonyl(triflate), or p-toluenesulfonyl/tosylate. A substitution reaction can take place between the alkylling agent and the ionizable heteroaryl as described above. This substitution reaction can result in the heteroaryl reacting with the carbon atom directly next to one of the leaving groups, which can result in a cationic heteroaryl and the leaving group as an anion. The reaction between the alkylling agent and the bridging monomer can generate an ionic polyimide. (See Scheme 10.)

Scheme 4. Some non-limiting examples of alkylling agents that can be utilized in the synthesis of ionic polyimides. X represents a leaving group.

A suitable bridge can connect the two leaving groups. The bridge can be selected based on its impact on chemical or physical properties of the resulting polymer. The bridge can comprise alkyl, alkenyl, alkynyl, aryl, ether, or ester functionality. Some examples of suitable bridges can be seen in Scheme 4.

Anions

The leaving groups can be used as an anion for the cationic monomer as a byproduct of the reaction between the alkylling agent and the bridging monomer. In some aspects, the anion can be exchanged for another anion that can be improve properties, such as viscosity, CO₂ affinity, or melting point. The anion can be exchanged by methods known to a person skilled in the art.

Some suitable anions that can be utilized can be seen in Scheme 5. In some aspects the anion can be chloride, bromide, iodide, nitrate, dicyanamide, acetate, bis(trifluoromethanesulfonyl)ammonium, hexafluorophosphate, tetrafluoroborate, sulfate, phoshate, tris(perfluoroalkyl)trifluorophosphatemesylate, aluminum chloride, thiocyanate, mesylate, triflate, or tosylate.

Scheme 5. Some possible anions that can be used in the synthesis of ionic polyimides.

Synthesis of Ionic Polyimide

The disclosed methods for synthesizing an ionic polyimide can be illustrated by Scheme 10. The ionic polyimide can be synthesized by the condensation reaction between a dianhydride (e.g., those shown in Scheme 2) and a suitable monoamine (e.g., those shown in Scheme 3). The reaction can be performed neat or in a solvent. The reaction can be optionally heated. After an optional removal of the solvent, the resulting molecule can be a bridging monomer comprising two imide functional groups and two ionizable heteroaryl. An alkylling agent with at least two leaving groups (Scheme 4) can connect two monomers of the bridging monomer through a substitution reaction. This reaction can create a positively charged dimer, trimer, or polymer paired with a suitable anion (Scheme 5). This can represent a step-growth polymerization method.

Condensation Reaction to Form a Monomeric Imide

The ionic polyimide can be synthesized by a condensation reaction between a dianhydride (Scheme 2) and a suitable amine (Scheme 3). As shown in Scheme 6, the dianhydride can be mixed with two molar equivalents of the amine attached to a heteroaryl in a suitable solvent. The amine functional group can react with the anhydride functional group to form an imide functional group and a molecule of water, which can be removed with the solvent. The resulting product is a bridging monomer. In previously developed methods (Scheme 1), utilizing a diamine, a polymer can be synthesized. However, disclosed herein is a method to synthesize a bridging monomer, which can allow for greater structure control before the step growth mechanism to synthesize a polymer.
Some suitable solvents include, but are not limited to water, dichloromethane, chloroform, ethyl acetate, tetrahydrofuran, acetone, acetonitrile, N,N-dimethylformamide, or dimethyl sulfoxide. The reaction can also be optionally heated up to 150°C.

The reaction mixture can be stirred and heated for up to 48 hours to generate the bridging monomer. After the removal of the solvent and generated water, the bridging monomer can be isolated.

The monomeric imide, or bridging monomer, can also be synthesized by a multi-step reaction. As seen in Scheme 7, the dianhydride can be mixed with two molar equivalents of the amine attached to a leaving group in a suitable solvent. The amine functional group can react with the anhydride functional group to form an imide functional group and a molecule of water, which can be removed with the solvent. The resulting compound can be reacted with two equivalents of heteroaryl to form the bridging monomer.

The synthesized bridging monomer can be ionized through an alkylation reaction with a suitable alkylating agent as described above (see e.g., Scheme 4). The bridging monomer can be mixed with the alkylating agent in a suitable solvent. The attached heteroaryl can react with the carbon atom next to one of the leaving groups. This alkylation reaction can positively ionize the bridging monomer and generate a negatively charged anion from the leaving group (Scheme 8). By selecting an alkylating agent with at least two leaving groups connected by a suitable bridge as described above, the alkylation reaction can result in the step-growth of a polymer. In some aspects the alkylation reaction forms a dimer, trimer, or a longer polymer.

Some suitable solvents include, but are not limited to water, methanol, ethanol, dichloromethane, chloroform, ethyl acetate, tetrahydrofuran, acetone, acetonitrile, N,N-dimethylformamide, or dimethyl sulfoxide. The reaction can also be optionally heated up to 150°C.

The reaction mixture can be stirred and heated for up to 48 hours to generate the alkylated polymer. A person skilled in the art would know other conditions for the reaction. After the removal of the solvent and generated water, the bridging ionic polynimide can be isolated.

Optionally, a salt can be added to the alkylation reaction mixture to change the identity of the anion (Scheme 9). For example, instead of having the anionic version of the leaving...
The anion could be exchanged for another anion, such as but not limited to chloride, bromide, iodide, nitrate, dicyanamide, acetate, bis(trifluoromethane)sulfonamide, hexafluorophosphate, tetrafluoroborate, sulfate, phosphate, tris(perfluoralkyl)trifluorophosphatemesylate, aluminum chloride, thiocyanide, mesylate, triflate, or tosylate.

Some suitable solvents for the metathesis include, but are not limited to water, methanol, ethanol, dichloromethane, chloroform, ethyl acetate, tetrahydrofuran, acetone, acetonitrile, N,N-dimethylformamide, or dimethyl sulfoxide. The reaction can also be optionally heated up to 150°C.

The reaction mixture can be stirred and heated for up to 48 hours to generate the alkylated polymer. A person skilled in the art would know other conditions for the reaction. After the removal of the solvent and generated water, the bridging ionic polyimide can be isolated.

The heteroaryl structures can be chosen to influence H-bonding by reducing/blocking or enhancing the ability of the heteroaryl ring to undergo these types of interactions. The components can be selected to form highly porous, structured architectures that can be translatable to ionic polyimides formed with covalent bonds.

However, retention of helix structures in the final ionic polyimide can be dependent on the use of a rigid linker group, such as para- or meta-xyl, cyclohexyl or similar structures that can provide additional frustrations to chain packing, i.e. the ionic polyimide must be constructed based upon the same principles that have driven the performance of conventional polyimides.

Finally, the selection of the anion can play a role in the overall structure and supramolecular assembly of ionic polyimides. Based on analogy to ILs and poly(ILs), halide anions can provide larger Tg/Tm values and stronger H-bonds than the molecular anions which can aid organization. However, molecular anions such as BF4 and TpF2N can still exhibit these H-bonding interactions and can produce a more tractable polymer.
Compositions of Ionic Liquids

In some examples, an ionic polyimide can be mixed with an ionic liquid. Some suitable examples are provided herein.

In one aspect, disclosed herein are ionic liquid compositions. The term “ionic liquid” has many definitions in the art, but is used herein to refer to salts (i.e., compositions comprising cations and anions) that are liquid at a temperature of at or below about 150°C, e.g., at or below about 120, 100, 80, 60, 40, or 25°C. That is, at one or more temperature ranges or points at or below about 150°C the disclosed ionic liquid compositions are liquid; although, it is understood that they can be solids at other temperature ranges or points. Since the disclosed ionic liquid compositions are liquid, and thus not crystalline solids, at a given temperature, the disclosed compositions do not suffer from the problems of polymorphism associated with crystalline solids. An ionic liquid is not considered a mere solution containing ions as solutes dissolved therein.

The use of the term “liquid” to describe the disclosed ionic liquid compositions is meant to describe a generally amorphous, non-crystalline, or semi-crystalline state. For example, while some structured association and packing of cations and anions can occur at the atomic level, the disclosed ionic liquid compositions have minor amounts of such ordered structures and are therefore not crystalline solids. The compositions disclosed herein can be fluid and free-flowing liquids or amorphous solids such as glasses or waxes at a temperature at or below about 150°C. In particular, examples disclosed herein, the disclosed ionic liquid compositions are liquid at which the composition is applied (i.e., ambient temperature).

Further, the disclosed ionic liquid compositions are materials composed of at least two different ions; each of which can independently and simultaneously introduce a specific characteristic to the composition not easily obtainable with traditional dissolution and formulation techniques. Thus, by providing different ions and ion combinations, one can change the characteristics or properties of the disclosed ionic liquid compositions in a way not seen by simply preparing various crystalline salt forms. Examples of characteristics that can be controlled in the disclosed compositions include, but are not limited to, melting, solubility control, and rate of dissolution. It is this multi-nature/functionality of the disclosed ionic liquid compositions which allows one to fine-tune or design in very specific desired material properties. It is further understood that the disclosed ionic liquid compositions can include solvent molecules (e.g., water); however, these solvent molecules should not be present in excess in the sense that the disclosed ionic liquid compositions are dissolved in the solvent, forming a solution. That is, the disclosed ionic liquid compositions contain no or minimal amounts of solvent molecules that are free and not bound or associated with the ions present in the ionic liquid composition. Thus, the disclosed ionic liquid compositions can be liquid hydrates or solvates, but not solutions.

Ionic liquids have been of general interest because they are environmentally-friendly alternatives to organic solvents for various chemical processes, e.g., liquid/liquid extractions, catalysis, separations, and electrochemistry. Ionic liquids have also become popular alternative media for chemical synthesis because of their low volatility and low toxicity. See, e.g., Wasserscheid and Keim, Angew Chem Int Ed Engl, 2000, 39:3772; and Wasserscheid, “Ionic Liquids in Synthesis,” 1st Ed., Wiley-VCH, 2002. Further, ionic liquids can reduce costs, disposal requirements, and hazards associated with volatile organic compounds. Other exemplary properties of ionic liquids are high ionic conductivity, non-volatility, non-flammability, high thermal stability, wide temperature for liquid phase, highly solvability, and non-coordinating. For a review of ionic liquids see, for example, Welton, Chem Rev. 1999, 99:2071-2083; and Carlin et al., Advances in Nonaqueous Chemistry, Mamantov et al. Eds., VCH Publishing, New York, 1994.

The specific physical properties (e.g., melting point, viscosity, density, water solubility, etc.) of ionic liquids are determined by the choice of cation and anion, as is disclosed more fully herein. As an example, the melting point for an ionic liquid can be changed by making structural modifications to the ions or by combining different ions. Similarly, the particular chemical properties (e.g., bioactivity, toxicity, pharmacokinetics, etc.), can be selected by changing the constituent ions of the ionic liquid.

The disclosed ionic liquids care liquid at some temperature range or point at or below about 150°C. For example, the disclosed ionic liquids can be a liquid at or below about 150, 149, 148, 147, 146, 145, 144, 143, 142, 141, 140, 139, 138, 137, 136, 135, 134, 133, 132, 131, 130, 129, 128, 127, 126, 125, 124, 123, 122, 121, 120, 119, 118, 117, 116, 115, 114, 113, 112, 111, 110, 109, 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97, 96, 95, 94, 93, 92, 91, 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, 79, 78, 77, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67, 66, 65, 64, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, -15, -16, -17, -18, -19, -20, -21, -22, -23, -24, -25, -26, -27, -28, -29, or -30°C, where any of the stated values can form an upper or lower endpoint when appropriate. Further, examples disclosed herein, the disclosed ionic liquids can be liquid at any point from about -30°C to about 150°C, from about -20°C to about 140°C, -10°C to about 130°C, from about 0°C to about 120°C, from about 10°C to about 110°C, from about 20°C to about 100°C, from about 30°C to about 90°C, from about 40°C to about 80°C, from about 50°C to about 70°C, from about -30°C to about 50°C, from about -30°C to about 90°C, from about -30°C to about 110°C, from about -30°C to about 130°C, from about -30°C to about 150°C, from about 30°C to about 90°C, from about 30°C to about 110°C, from about 30°C to about 130°C, from about 30°C to about 150°C, from about 0°C to about 100°C, from about 0°C to about 70°C, from about 0°C to about 50°C, and the like.

Further, in some examples the disclosed ionic liquid compositions can be liquid over a wide range of temperatures, not just a narrow range of, say, 1-2 degrees. For example, the disclosed ionic liquid compositions can be liquids over a range of at least about 4, 5, 6, 7, 8, 9, 10, or more degrees. In other example, the disclosed ionic liquid compositions can be liquid over at least about 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more degree temperature range. Such temperature ranges can begin and/or end at any of the temperature points disclosed in the preceding paragraph.

In many examples disclosed herein the disclosed ionic liquid compositions are liquid at the temperature at which they will be used or processed (e.g., ambient temperature). In still other examples, the disclosed compositions can be liquid at the temperature at which they are formulated or processed.

It is understood, however, that the disclosed ionic liquid compositions can, though need not, be solubilized, and solutions of the disclosed ionic liquids are contemplated herein. Further, the disclosed ionic liquid compositions can
be formulated in an extended or controlled release vehicle, for example, by encapsulating the ionic liquids in micro-
spheres or microcapsules using methods known in the art.
Still further, the disclosed ionic liquid compositions can
themselves be solvents for other solutes. For example, the
disclosed ionic liquids can be used to dissolve a particular
nonionic or ionic herbicidal active. These and other formul-
ations of the disclosed ionic liquids are disclosed elsewhere
herein.

In some examples, the disclosed ionic liquids are not
solutions where ions are dissolved in a solute. In other
examples, the disclosed ionic liquid compositions do not
contain ionic exchange resins. In still other examples, the
disclosed ionic liquids are substantially free of water. By
substantially free is meant that water is present at less than
about 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0.5, 0.25, or 0.1 wt. %, based
on the total weight of the composition.

Cations

Particular examples of cationic compounds that can be
present in the disclosed compositions are compounds that
contain nitrogen or phosphorus atoms. Nitrogen atom-con-
taining groups can exist as neutral or can be converted to
positively-charged quaternary ammonium species, for
example, through alkylation or protonation of the nitrogen
atom. Thus, compounds that possess a quaternary nitrogen
atom (known as quaternary ammonium compounds
(QACs)) are typically cations. According to the methods
and compositions disclosed herein, any compound that
contains a quaternary nitrogen atom or a nitrogen atom that
can be converted into a quaternary nitrogen atom can be a suitable
cation for the disclosed compositions. In some examples, the
cation is not a protonated tertiary amine, a protonated
heteroarylamine, a protonated pyridoline, or a metal.

Some specific QACs suitable for use herein are aliphatic
heteroaryls. An aliphatic heteroaryl cation is a compound
that comprises at least one aliphatic moiety bonded to a
heteroatom. In the aliphatic heteroaryl cation, the aliphatic
moiety can be any alkyl, alkenyl, alkynyl, het-
eroalkyl, heteroalkenyl, heteroalkynyl, cycloalkyl, cycloalk-
kenyl, heterocycloalkyl, or heterocycloalkenyl group, as
described herein. For example, the aliphatic moiety can
include substituted or unsubstituted C_12-20 alkyl, substituted
or unsubstituted C_2-20 alkenyl, substituted or unsubstituted
C_2-20 alkynyl, substituted or unsubstituted C_2-20 heteroalk-
yl substituted or unsubstituted C_2-20 heteroalkenyl, or
substituted or unsubstituted C_2-20 heteroalkynyl groups. In the
aliphatic heteroaryl cations, the aliphatic moiety is bonded
to a heteroatom in the heteroaryl moiety.

In the aliphatic heteroaryl cation, the heteroaryl moiety
can be any heteroaryl moiety as described herein. For
example, the heteroaryl moiety can be an aryl group having
one or more heteroatoms (e.g., nitrogen, oxygen, sulfur,
phosphorus, or halonium). Examples of specific heteroaryl
moieties that can be used in the aliphatic heteroaryl cations
include, but are not limited to, substituted or unsubstituted
pyrazoles, substituted or unsubstituted pyridines, substituted
or unsubstituted pyrazines, substituted or unsubstituted
pyrimidines, substituted or unsubstituted pyrazidines,
substituted or unsubstituted indolines, substituted or unsub-
stituted isoindoles, substituted or unsubstituted indoles,
substituted or unsubstituted imidazoles, substituted or unsub-
stituted oxazoles, substituted or unsubstituted triazoles, substituted
or unsubstituted thiazoles, substituted or unsubstituted
purines, substituted or unsubstituted quinazolines, sub-
stituted or unsubstituted quinolines, substituted or sub-
stituted thalazines, substituted or unsubstituted quinooxa-
lines, substituted or unsubstituted phenazine, and the like,
including derivatives and mixtures thereof. In the aliphatic
heteroaryl cations, a heteroatom in the heteroaryl moiety is
bonded to the aliphatic moiety. When the heteroatom of the
heteroaryl is nitrogen, this forms a quaternary ammonium
cation, as described herein.

Further examples of aliphatic heteroaryl cations include
substituted or unsubstituted benzothiazoliums, substituted
or unsubstituted benzimidazoliums, substituted or unsub-
stituted benzotriazoliums, substituted or unsubstituted pyrid-
iniums, substituted or unsubstituted pyridaziniums, substituted
or unsubstituted pyrimidiniums, substituted or unsubstituted
pyraziniums, substituted or unsubstituted imid-azoliums, substituted or unsubstituted pyrazidiniums, sub-
stituted or unsubstituted oxazoliums, substituted or unsub-
stituted pyrazoliums, substituted or unsubstituted tri-
azoliums, substituted or unsubstituted 1,2,3-triazoliums, sub-
stituted or unsubstituted 1,2,4-triazoliums, substituted or unsubstituted
1,3,4-triazoliums, substituted or unsubstituted isocoumarins,
substituted or unsubstituted heterocycloalkenyls, substituted or
substituted pyridiniums, substituted or unsubstituted
quinoliums, and substituted or unsubstituted isouquinolines.

Tetraalkyl Ammonium

The disclosed compositions can also comprise a tetraalkyl
ammonium cation. Suitable tetraalkyl ammonium cations
comprise four alkyl moieties, as disclosed herein. In one
example, a tetraalkyl ammonium cation can comprise one
long chain alkyl moiety (e.g., 10 or more carbon atoms in
length) and three short chain alkyl moieties (e.g., less than
10 carbon atoms in length).

Some specific examples of tetraalkyl ammonium cations
that can be included in the disclosed compositions include,
but are not limited to, cetyl trimethyl ammonium, lauryl
trimethyl ammonium, myristyl trimethyl ammonium, stearyl
trimethyl ammonium, arachidyl trimethyl ammonium, or
mixtures thereof. Other examples include, but are not
limited to, cetyl dimethyl ethyl ammonium, lauryl
dimethyl ethyl ammonium, myristyl dimethyl ethyl ammonium,
stearyl dimethyl ethyl ammonium, arachidyl dimethyl ethyl
ammonium, or mixtures thereof.

Anions

Some suitable anions include, but are not limited to,
chloride, bromide, iodide, nitrate, diacetylmide, acetate,
bis(trifluoromethane)sulphonamide, hexafluorophosphate, tet-
rafluoroborate, sulfate, phosphate, tris(perfluoroalkyl)trifi-
luorophosphates, aluminum chloride, thioyanide, mesylate,
triflate, or tosylate.

Compositions of Ionic Polyimides and Ionic Liquids

An additional dimension of control over material structure,
properties and performance can be the introduction of
“free” IL into the polymer matrix that can further serve to aid
assembly via selective, non-covalent interactions with the
ionic segments of the polymer backbone. This concept has
been applied to amorphous “side-chain” poly(ILs) and
ionenes to improve CO2 permeability compared to the neat
polymer material alone. Lodge and co-workers have
successfully applied such approaches to self-assembly of
linear block copolymers containing polar or ionic blocks
within non-polar polystyrene blocks, with promising results
for a CO2 separation membrane. (See He et al., J. Am. Chem.
Soc. 128 (2006) 2745-50.) However, although such polymer
materials exhibit improved performance when ILs are
included in the membrane, they can be largely composed of
a relatively impermeable poly(styrene) component, can rely
on radical polymerization mechanisms and can lack the
unique folds and twists that can be imparted by some
molecules like 6-FDA. Thus the introduction of “free” ILs
to ionic polyimides can provide the driving force needed
create highly open, yet ordered nanostructures.
Gas Capture with Ionic Polyimides

Disclosed herein are methods to capture gases utilized in disclosed compositions. These compositions are useful for reducing volatile compounds, such as carbon dioxide (CO₂), carbon monoxide (CO), sulfur dioxide (SO₂), hydrogen sulfide (H₂S), nitrogen oxide (NO), nitrogen dioxide (NO₂), carbonyl sulfide (COS), and carbon disulfide (CS₂), mercaptans, H₂O, O₂, H₂, N₂, C₁₋₃ hydrocarbons (e.g., methane and propane), volatile organic compounds, and mixtures of these and other volatile compounds from gas streams and liquid streams.

Contacting a gas stream with a membrane comprising an ionic polyimide can result in the absorption of volatile compounds. Contacting a gas stream with a membrane comprising an ionic polyimide and an ionic liquid can result in the absorption of volatile compounds.

EXAMPLES

The following examples are set forth below to illustrate the methods and results according to the disclosed subject matter. These examples are not intended to be inclusive of all aspects of the subject matter disclosed herein, but rather to illustrate representative methods and results. These examples are not intended to exclude equivalents and variations of the present invention, which are apparent to one skilled in the art.

Efforts have been made to ensure accuracy with respect to numbers (e.g., amounts, temperature, etc.) but some errors and deviations should be accounted for. Unless indicated otherwise, parts are parts by weight, temperature is in °C, or is at ambient temperature, and pressure is at or near atmospheric. There are numerous variations and combinations of reaction conditions, e.g., component concentrations, temperatures, pressures and other reaction ranges and conditions that can be used to optimize the product purity and yield obtained from the described process. Only reasonable and routine experimentation will be required to optimize such process conditions.

All chemicals used were of analytical grade, purchased from Sigma-Aldrich (St. Louis, Mo.) or Alfa Aesar (Ward Hill, Mass.), and used without further purification unless otherwise noted.

Example 1

Ionic Polyimide synthesized from
1-(3-aminopropyl)-2,4,5-trimethylimidazole, 6-FDA and 1,4-dichlorodurene

2 equivalents of 1-(3-aminopropyl)-2,4,5-trimethylimidazole can be mixed with 6-FDA in N,N-dimethylformamide. The reaction can be stirred for 16 hours at 120°C, to generate a bridging monomer. An equivalent molar ratio of alkylating agent and lithium bis(trifluoromethane)sulfonimide. The composition can be stirred for an additional 16 hours at 120°C to generate an ionic polyimide (see Scheme 11).

Scheme 11. Ionic Polyimide synthesized from 1-(3-aminopropyl)-2,4,5-trimethylimidazole, 6-FDA and 1,4-dichlorodurene
Example 2

Ionic Polyimide synthesized from imidazole, p-bromoaniline, PMDA and α α'-dichloro-p-xylene

2 equivalents of p-bromoaniline can be reacted with PMDA in dimethylformamide. The reaction can be stirred at 150° C. for 16 hours. The product is reacted with 2 equivalents of imidazole with cesium carbonate, copper iodide for an additional 48 hours in dimethylformamide at 150° C. to generate the bridging monomer. The bridging monomer can be alkylated with α,α'-dichloro-p-xylene in the presence of lithium bis(trifluoromethane)sulfonimide in N-methyl-2-pyrrolidone at 150° C. for an additional 16 hours. The ionic polyimide can be separated from the reaction mixture.
Example 3

Pressing of an Ionic Polyimide into a Film for CO₂ Capture

Approximately 1.00 g of material was pressed at 220°C, into a thin film of about 200 μm thickness and >60 mm in diameter. A 47 mm disc was punched from the larger film and then tested in a time-lag membrane apparatus. The CO₂ permeability of this initial material was determined to be relatively low (about 1 Barrer), and as such, other gases were not tested. The low permeability of CO₂ in the ionic polyimide described in Example 1 is not unexpected as PMDA is not typically employed in conventional aromatic polyimide materials due to its rigidity. Initial SEM and XRD characterization results show that the ionic polyimide based on PMDA is relatively amorphous with some crystalline regions), which is correlated to the low permeability level observed in this first material.

Example 4

Pressing of an Ionic Polyimide with 25 wt. % 1-ethyl-3-methylimidazolium bis(trifluoromethane)sulfonamide into a Film for CO₂ Capture

The ionic polyimide based on PMDA can directly interface with ILs, as evidenced by the formation of a stable, composite material containing the polymer with ~25 wt % of the IL, [C₂ mim][TF₂N], which is stoichiometrically equivalent to one additional “free” cation-anion pair per two cation-anion pairs within/associated to the original polymer backbone. Upon addition of the IL, the polymer material becomes more pliable and optically cloudy (FIG. 1), which can be indicative of supramolecular ordering, and validating the hypothesis that ionic polyimides can accommodate significant quantities of “free” ILs within their structures and remain mechanically stable solids.

It will be appreciated that variations of the above-disclosed and other features and functions, or alternatives thereof, may be combined into many other different systems or applications. Various presently unforeseen or unanticipated alternatives, modifications, variations, or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims.

What is claimed is:

1. A composition, comprising an ionic polyimide having the formula:

 ![Chemical Structure](image)

 wherein,

 Y is selected from the group consisting of null, hydrogen, halogen, hydroxyl, carbonyl, O, S, SO₂, cyano, C(F₃)₂, substituted or unsubstituted C₁₋₂₀ alkyl, substituted or unsubstituted C₂₋₁₀ alkynyl, substituted or unsubstituted C₂₋₁₀ alkenyl, substituted or unsubstituted C₂₋₁₀ heteroalkyl, substituted or unsubstituted C₂₋₁₀ heteroalkenyl, substituted or unsubstituted C₂₋₁₀ heteroalkynyl, substituted or unsubstituted C₂₋₁₀ heteroalkoxy, substituted or unsubstituted heteroaryl, substituted or unsubstituted heteroalkoxy, substituted or unsubstituted heteroalkynyl, substituted or unsubstituted heteroalkenyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl;

 Z is selected from the group consisting of CH, CH₂, carbonyl, O, S, SO₂, cyano, C(F₃)₂, substituted or unsubstituted C₁₋₂₀ alkyl, substituted or unsubstituted C₂₋₁₀ alkenyl, substituted or unsubstituted C₂₋₁₀ alkynyl, substituted or unsubstituted C₂₋₁₀ heteroalkyl, substituted or unsubstituted C₂₋₁₀ heteroalkenyl, substituted or unsubstituted C₂₋₁₀ heteroalkynyl, substituted or unsubstituted heteroaryl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted heteroaryl, and substituted or unsubstituted heteroaryl;

 L¹ and L² are selected from the group consisting of branched and unbranched alkyl, alkenyl, and alkynyl groups having 1 to 12 carbon atoms, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl, and mixture thereof;

 Q is an ionized heteroaryl;

 A is an anion; and

 n is an integer from 1 to 100,000.

2. The composition of claim 1, wherein Y is selected from the group consisting of substituted or unsubstituted pyrazoliun, substituted or unsubstituted pyridinium, substituted or unsubstituted pyrazinium, substituted or unsubstituted pyridazinium, substituted or unsubstituted piperidinium, substituted or unsubstituted pyrrolidinium, substituted or unsubstituted indolizinium, substituted or unsubstituted isindolium, substituted or unsubstituted indolium, substituted or unsubstituted indazolinium, substituted or unsubstituted imidazolinium, substituted or unsubstituted oxazolinium, substituted or unsubstituted triazolinium, substituted or unsubstituted tetrazolinium, substituted or unsubstituted thiazolinium, substituted or unsubstituted pyrrolinium, substituted or unsubstituted pyridinium, substituted or unsubstituted pyrazolinium, substituted or unsubstituted quinolinium, substituted or unsubstituted phthalazinium, substituted or unsubstituted quinoxalinium, substituted or unsubstituted phenazinum, and substituted or unsubstituted morpholinium.

3. The composition of claim 1, wherein Q is substituted with a functional group selected from the group consisting of alkyl, halogen, alkoxy, alkenyl, alkynyl, aryl, heteroaryl, aldehyde, amino, carboxylic acid, ester, ether, halide, hydroxy, ketone, nitro, silyl, sulfo-oxo, sulfonyl, sulfone, sulfoxide, and thiol.

4. The composition of claim 1, wherein Q is imidazolinium.

5. The composition of claim 1, wherein A is selected from the group consisting of chloride, bromide, iodide, nitrate, dicyanamide, acetate, bis(trifluoromethane)sulfonamide, hexafluorophosphate, tetrafluoroborate, sulfate, phosphate, trifluoro(alkyl)trifluorophosphates, mesylate, aluminum chloride, thiocyanate, mesylate, triflate, and tosylate.

6. The composition of claim 1, wherein Y and Z together with the atoms to which they are attached form a substituted or unsubstituted triptycene.

7. The composition of claim 1, wherein the ionic polyimide is selected from the group consisting of:
8. The composition of claim 1, wherein \(n \) is an integer from 1 to 100,000.

9. The composition of claim 1, further comprising an ionic liquid having the formula:

\[
\begin{align*}
R^1, R^2, R^3, R^4, \text{ and } R^5 \text{ are, independent of one another, selected from the group consisting of hydrogen, branched or unbranched } C_{1-12} \text{ alkyl, branched or unbranched } C_{2-12} \text{ alkenyl, and branched or unbranched } C_{2-12} \text{ alkylnyl; and } \\
A^1 \text{ is an anion.}
\end{align*}
\]

10. The composition of claim 9, wherein \(A \) and \(A^1 \) are independently selected from the group consisting of chloride, bromide, iodide, nitrate, dicyanamide, acetate, bis(trifluoromethane)sulfonamide, hexafluorophosphate, tetrafluoroborate, sulfate, phosphate, tris(perfluoroalkyl)
trifluorophosphatesylate, aluminum chloride, thiocyanide, mesylate, triflate, and tosylate.

11. The composition of claim 9, wherein the ionic liquid is 1-ethyl-3-methylimidazolium bis(trifluoromethane)sulfonamide.

12. The composition of claim 11, wherein the ionic polyimide is selected from the group consisting of:

13. The composition of claim 9, wherein n is an integer from 10 to 5,000.

14. A method for capturing carbon dioxide from a gas stream, comprising:

feeding the gas stream through a membrane, wherein the membrane comprises an ionic polyimide having the following structure:

wherein n is an integer from 1 to 100,000.
wherein,

Y is selected from the group consisting of null, hydrogen, halogen, hydroxyl, carbonyl, O, S, SO₂, cyano, C(CF₃)₂, substituted or unsubstituted C₁₋₂₀ alkyl, substituted or unsubstituted C₂₋₂₀ alkenyl, substituted or unsubstituted C₂₋₂₀ alkynyl, substituted or unsubstituted C₁₋₂₀ heteroalkyl, substituted or unsubstituted C₂₋₂₀ heteroalkenyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted triptycene, and substituted or unsubstituted heteroaryl;

Z is selected from the group consisting of CH₂, carbonyl, O, S, SO₂, cyano, C(CF₃)₂, substituted or unsubstituted C₁₋₂₀ alkyl, substituted or unsubstituted C₂₋₂₀ alkenyl, substituted or unsubstituted C₂₋₂₀ alkynyl, substituted or unsubstituted C₁₋₂₀ heteroalkyl, substituted or unsubstituted C₂₋₂₀ heteroalkenyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted triptycene, and substituted or unsubstituted heteroaryl;

L¹ and L² are selected from the group consisting of branched and unbranched alkyl, alkenyl, and alkynyl groups having 1 to 12 carbon atoms, substituted or unsubstituted aryl, and substituted or unsubstituted heteroaryl, and mixture thereof;

Q is an ionized heteroaryl;

A is an anion; and

n is an integer from 1 to 100,000.
wherein \(n \) is an integer from 1 to 100,000.

21. The method of claim 14, wherein \(n \) is an integer from 10 to 5,000.

22. The method of claim 14, wherein the membrane further comprises an ionic liquid having the formula:

\[
\begin{align*}
\text{R}^1 \quad \text{N}^+ \quad \text{R}^2 \quad \text{A}^1 \\
\text{R}^3 \quad \text{N}^- \quad \text{R}^4 \quad \text{R}^5
\end{align*}
\]

wherein,

\(\text{R}^1, \text{R}^2, \text{R}^3, \text{R}^4, \text{and} \text{R}^5 \) are, independently of each other, selected from the group consisting of hydrogen and branched and unbranched alkyl, alkenyl, and alkynyl groups having 1 to 12 carbon atoms; and \(\text{A}^1 \) is an anion.

23. The method of claim 22, wherein \(\text{A}^1 \) are independently selected from the group consisting of chloride, bromide, iodide, nitrate, dicyanamide, acetate, bis(trifluoromethane)sulfonamide, hexafluorophosphate, tetrafluoroborate, sulfate, phosphate, tris(perfluoralkyl)trifluorophosphatomesylate, aluminum chloride, thiocyanate, mesylate, triflate, and tosylate.

24. The method of claim 22, wherein the ionic liquid is 1-ethyl-3-methylimidazolium bis(trifluoromethane)sulfonamide.

25. The method of claim 24, wherein the ionic polyimide is selected from the group consisting of:
wherein \(n \) is an integer from 1 to 100,000.

26. The method of claim 22, wherein \(n \) is an integer from 10 to 5,000.

27. The method of claim 14, wherein the gas stream is a flue gas or post-combustion stream.

* * * * *
It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Specification

Please replace the formula I Column 9, Lines 10-20, with the following:

Signed and Sealed this
Sixth Day of February, 2018

[Signature]

Joseph Matal
Performing the Functions and Duties of the
Under Secretary of Commerce for Intellectual Property and
Director of the United States Patent and Trademark Office